TOPICS
Search

Search Results for ""


1781 - 1790 of 4515 for Real and/or Rational numbersSearch Results
Given a set of n+1 control points P_0, P_1, ..., P_n, the corresponding Bézier curve (or Bernstein-Bézier curve) is given by C(t)=sum_(i=0)^nP_iB_(i,n)(t), where B_(i,n)(t) ...
The Jacobi symbol, written (n/m) or (n/m) is defined for positive odd m as (n/m)=(n/(p_1))^(a_1)(n/(p_2))^(a_2)...(n/(p_k))^(a_k), (1) where m=p_1^(a_1)p_2^(a_2)...p_k^(a_k) ...
In antiquity, geometric constructions of figures and lengths were restricted to the use of only a straightedge and compass (or in Plato's case, a compass only; a technique ...
The Hurwitz zeta function zeta(s,a) is a generalization of the Riemann zeta function zeta(s) that is also known as the generalized zeta function. It is classically defined by ...
Bertelsen's number is an erroneous name erroneously given to the erroneous value of pi(10^9)=50847478, where pi(x) is the prime counting function. This value is 56 lower than ...
The nth central trinomial coefficient is defined as the coefficient of x^n in the expansion of (1+x+x^2)^n. It is therefore the middle column of the trinomial triangle, i.e., ...
Given a sequence {a_n}_(n=1)^infty, a formal power series f(s) = sum_(n=1)^(infty)(a_n)/(n^s) (1) = a_1+(a_2)/(2^s)+(a_3)/(3^s)+... (2) is called the Dirichlet generating ...
The elliptic curve factorization method, abbreviated ECM and sometimes also called the Lenstra elliptic curve method, is a factorization algorithm that computes a large ...
The Fibonacci cube graph of order n is a graph on F_(n+2) vertices, where F_n is a Fibonacci number, labeled by the Zeckendorf representations of the numbers 0 to F_(n+2)-1 ...
By way of analogy with the prime counting function pi(x), the notation pi_(a,b)(x) denotes the number of primes of the form ak+b less than or equal to x (Shanks 1993, pp. ...
1 ... 176|177|178|179|180|181|182 ... 452 Previous Next

...