Search Results for ""
141 - 150 of 1289 for Quaternion GroupSearch Results
The McLaughlin group is the sporadic group McL of order |McL| = 898128000 (1) = 2^7·3^6·5^3·7·11. (2) It is implemented in the Wolfram Language as McLaughlinGroupMcL[].
A nilpotent Lie group is a Lie group G which is connected and whose Lie algebra is a nilpotent Lie algebra g. That is, its Lie algebra lower central series ...
The group C_2 is the unique group of group order 2. C_2 is both Abelian and cyclic. Examples include the point groups C_s, C_i, and C_2, the integers modulo 2 under addition ...
A particular type of automorphism group which exists only for groups. For a group G, the inner automorphism group is defined by Inn(G)={sigma_a:a in G} subset Aut(G) where ...
There are at least two distinct notions known as the Whitehead group. Given an associative ring A with unit, the Whitehead group associated to A is the commutative quotient ...
The cyclic group C_(11) is unique group of group order 11. An example is the integers modulo 11 under addition (Z_(11)). No modulo multiplication group is isomorphic to ...
A Lie group is a group with the structure of a manifold. Therefore, discrete groups do not count. However, the most useful Lie groups are defined as subgroups of some matrix ...
The group algebra K[G], where K is a field and G a group with the operation *, is the set of all linear combinations of finitely many elements of G with coefficients in K, ...
The general orthogonal group GO_n(q,F) is the subgroup of all elements of the projective general linear group that fix the particular nonsingular quadratic form F. The ...
O_h is the point group of symmetries of the octahedron having order 48 that includes inversion. It is also the symmetry group of the cube, cuboctahedron, and truncated ...
...
View search results from all Wolfram sites (15672 matches)

