Search Results for ""
461 - 470 of 622 for Quadratic InvariantSearch Results
Let {a_i}_(i=0)^(N-1) be a periodic sequence, then the autocorrelation of the sequence, sometimes called the periodic autocorrelation (Zwillinger 1995, p. 223), is the ...
An algorithm that can be used to factor a polynomial f over the integers. The algorithm proceeds by first factoring f modulo a suitable prime p via Berlekamp's method and ...
A Cartan matrix is a square integer matrix who elements (A_(ij)) satisfy the following conditions. 1. A_(ij) is an integer, one of {-3,-2,-1,0,2}. 2. A_(ii)=2 the diagonal ...
A special case of Hölder's sum inequality with p=q=2, (sum_(k=1)^na_kb_k)^2<=(sum_(k=1)^na_k^2)(sum_(k=1)^nb_k^2), (1) where equality holds for a_k=cb_k. The inequality is ...
Chebyshev noticed that the remainder upon dividing the primes by 4 gives 3 more often than 1, as plotted above in the left figure. Similarly, dividing the primes by 3 gives 2 ...
Adding a damping force proportional to x^. to the equation of simple harmonic motion, the first derivative of x with respect to time, the equation of motion for damped simple ...
A diagonal matrix is a square matrix A of the form a_(ij)=c_idelta_(ij), (1) where delta_(ij) is the Kronecker delta, c_i are constants, and i,j=1, 2, ..., n, with no implied ...
An n×n-matrix A is said to be diagonalizable if it can be written on the form A=PDP^(-1), where D is a diagonal n×n matrix with the eigenvalues of A as its entries and P is a ...
The divided difference f[x_0,x_1,x_2,...,x_n], sometimes also denoted [x_0,x_1,x_2,...,x_n] (Abramowitz and Stegun 1972), on n+1 points x_0, x_1, ..., x_n of a function f(x) ...
In order to find integers x and y such that x^2=y^2 (mod n) (1) (a modified form of Fermat's factorization method), in which case there is a 50% chance that GCD(n,x-y) is a ...
...