TOPICS
Search

Search Results for ""


731 - 740 of 13135 for Prime NumberSearch Results
The quotient W(p)=((p-1)!+1)/p which must be congruent to 0 (mod p) for p to be a Wilson prime. The quotient is an integer only when p=1 (in which case W(1)=2) or p is a ...
Let alpha be a nonzero rational number alpha=+/-p_1^(alpha_1)p_2^(alpha_2)...p_L^(alpha_L), where p_1, ..., p_L are distinct primes, alpha_l in Z and alpha_l!=0. Then ...
If p is prime, then p|P(p), where P(p) is a member of the Perrin sequence 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, ... (OEIS A001608). A Perrin pseudoprime is a composite number n ...
Let p be an irregular prime, and let P=rp+1 be a prime with P<p^2-p. Also let t be an integer such that t^3≢1 (mod P). For an irregular pair (p,2k), form the product ...
Consider the forms Q for which the generic characters chi_i(Q) are equal to some preassigned array of signs e_i=1 or -1, e_1,e_2,...,e_r, subject to product_(i=1)^(r)e_i=1. ...
The twin primes constant Pi_2 (sometimes also denoted C_2) is defined by Pi_2 = product_(p>2; p prime)[1-1/((p-1)^2)] (1) = product_(p>2; p prime)(p(p-2))/((p-1)^2) (2) = ...
Let p>3 be a prime number, then 4(x^p-y^p)/(x-y)=R^2(x,y)-(-1)^((p-1)/2)pS^2(x,y), where R(x,y) and S(x,y) are homogeneous polynomials in x and y with integer coefficients. ...
A mathematical object invented to solve irreducible congruences of the form F(x)=0 (mod p), where p is prime.
An algorithm which finds the least nonnegative value of sqrt(a (mod p)) for given a and prime p.
When f:A->B is a ring homomorphism and b is an ideal in B, then f^(-1)(b) is an ideal in A, called the contraction of b and sometimes denoted b^c. The contraction of a prime ...
1 ... 71|72|73|74|75|76|77 ... 1314 Previous Next

...