TOPICS
Search

Search Results for ""


721 - 730 of 13135 for Prime NumberSearch Results
If n=1,2 (mod 4), and the squarefree part of n is divisible by a prime p=3 (mod 4), then no difference set of order n exists. Equivalently, if a projective plane of order n ...
For a field K with multiplicative identity 1, consider the numbers 2=1+1, 3=1+1+1, 4=1+1+1+1, etc. Either these numbers are all different, in which case we say that K has ...
The prime link 05-0201, illustrated above, with braid word sigma_1^2sigma_2^2sigma_1^(-1)sigma_2^(-2) or sigma_1sigma_2^(-1)sigma_1sigma_2^(-2) and Jones polynomial ...
Let p(d,a) be the smallest prime in the arithmetic progression {a+kd} for k an integer >0. Let p(d)=maxp(d,a) such that 1<=a<d and (a,d)=1. Then there exists a d_0>=2 and an ...
A variant of the Pollard p-1 method which uses Lucas sequences to achieve rapid factorization if some factor p of N has a decomposition of p+1 in small prime factors.
In August 2002, M. Agrawal and colleagues announced a deterministic algorithm for determining if a number is prime that runs in polynomial time (Agrawal et al. 2004). While ...
The so-called explicit formula psi(x)=x-sum_(rho)(x^rho)/rho-ln(2pi)-1/2ln(1-x^(-2)) gives an explicit relation between prime numbers and Riemann zeta function zeros for x>1 ...
A random matrix is a matrix of given type and size whose entries consist of random numbers from some specified distribution. Random matrix theory is cited as one of the ...
Landau (1911) proved that for any fixed x>1, sum_(0<|I[rho]|<=T)x^rho=-T/(2pi)Lambda(x)+O(lnT) as T->infty, where the sum runs over the nontrivial Riemann zeta function zeros ...
The Möbius function is a number theoretic function defined by mu(n)={0 if n has one or more repeated prime factors; 1 if n=1; (-1)^k if n is a product of k distinct primes, ...
1 ... 70|71|72|73|74|75|76 ... 1314 Previous Next

...