Search Results for ""
611 - 620 of 13135 for Prime NumberSearch Results
![](/common/images/search/spacer.gif)
Define a Bouniakowsky polynomial as an irreducible polynomial f(x) with integer coefficients, degree >1, and GCD(f(1),f(2),...)=1. The Bouniakowsky conjecture states that ...
Let n-1=FR where F is the factored part of a number F=p_1^(a_1)...p_r^(a_r), (1) where (R,F)=1, and R<sqrt(n). Pocklington's theorem, also known as the Pocklington-Lehmer ...
Take K a number field and L an Abelian extension, then form a prime divisor m that is divided by all ramified primes of the extension L/K. Now define a map phi_(L/K) from the ...
There exist infinitely many n>0 with p_n^2>p_(n-i)p_(n+i) for all i<n, where p_n is the nth prime. Also, there exist infinitely many n>0 such that 2p_n<p_(n-i)+p_(n+i) for ...
Honaker's problem asks for all consecutive prime number triples (p,q,r) with p<q<r such that p|(qr+1). Caldwell and Cheng (2005) showed that the only Honaker triplets for ...
When p is a prime number, then a p-group is a group, all of whose elements have order some power of p. For a finite group, the equivalent definition is that the number of ...
If the integral coefficients C_0, C_1, ..., C_(N-1) of the polynomial f(x)=C_0+C_1x+C_2x^2+...+C_(N-1)x^(N-1)+x^N are divisible by a prime number p, while the free term C_0 ...
The pure equation x^p=C of prime degree p is irreducible over a field when C is a number of the field but not the pth power of an element of the field. Jeffreys and Jeffreys ...
Let a_n>=0 and suppose sum_(n=1)^inftya_ne^(-an)∼1/a as a->0^+. Then sum_(n<=x)a_n∼x as x->infty. This theorem is a step in the proof of the prime number theorem, but has ...
Given an arithmetic progression of terms an+b, for n=1, 2, ..., the series contains an infinite number of primes if a and b are relatively prime, i.e., (a,b)=1. This result ...
![](/common/images/search/spacer.gif)
...