TOPICS
Search

Search Results for ""


471 - 480 of 2098 for Prime FormulasSearch Results
Let j_k(alpha) denote the number of cycles of length k for a permutation alpha expressed as a product of disjoint cycles. The cycle index Z(X) of a permutation group X of ...
Given a formula y=f(x) with an absolute error in x of dx, the absolute error is dy. The relative error is dy/y. If x=f(u,v,...), then ...
The Rayleigh functions sigma_n(nu) for n=1, 2, ..., are defined as sigma_n(nu)=sum_(k=1)^inftyj_(nu,k)^(-2n), where +/-j_(nu,k) are the zeros of the Bessel function of the ...
Let the values of a function f(x) be tabulated at points x_i equally spaced by h=x_(i+1)-x_i, so f_1=f(x_1), f_2=f(x_2), ..., f_(11)=f(x_(11)). Then Shovelton's rule ...
The trigonometric formulas for pi/5 can be derived using the multiple-angle formula sin(5theta)=5sintheta-20sin^3theta+16sin^5theta. (1) Letting theta=pi/5 and x=sintheta ...
The Fermat quotient for a number a and a prime base p is defined as q_p(a)=(a^(p-1)-1)/p. (1) If pab, then q_p(ab) = q_p(a)+q_p(b) (2) q_p(p+/-1) = ∓1 (3) (mod p), where the ...
The fibonorial n!_F, also called the Fibonacci factorial, is defined as n!_F=product_(k=1)^nF_k, where F_k is a Fibonacci number. For n=1, 2, ..., the first few fibonorials ...
Honaker's problem asks for all consecutive prime number triples (p,q,r) with p<q<r such that p|(qr+1). Caldwell and Cheng (2005) showed that the only Honaker triplets for ...
p^x is an infinitary divisor of p^y (with y>0) if p^x|_(y-1)p^y, where d|_kn denotes a k-ary Divisor (Guy 1994, p. 54). Infinitary divisors therefore generalize the concept ...
A primitive polynomial is a polynomial that generates all elements of an extension field from a base field. Primitive polynomials are also irreducible polynomials. For any ...
1 ... 45|46|47|48|49|50|51 ... 210 Previous Next

...