TOPICS
Search

Search Results for ""


991 - 1000 of 1981 for Power SumSearch Results
The first and second Zagreb indices for a graph with vertex count n and vertex degrees v_i for i=1, ..., n are defined by Z_1=sum_(i=1)^nv_i^2 and Z_2=sum_((i,j) in ...
Let {f_n} and {a_n} be sequences with f_n>=f_(n+1)>0 for n=1, 2, ..., then |sum_(n=1)^ma_nf_n|<=Af_1, where A=max{|a_1|,|a_1+a_2|,...,|a_1+a_2+...+a_m|}.
Cahen's constant is defined as C = sum_(k=0)^(infty)((-1)^k)/(a_k-1) (1) = 0.64341054628... (2) (OEIS A118227), where a_k is the kth term of Sylvester's sequence.
Let A be a unital Banach algebra. If a in A and ||1-a||<1, then a^(-1) can be represented by the series sum_(n=0)^(infty)(1-a)^n. This criterion for checking invertibility of ...
Given a series of the form A(z)=sum_(k)a_kz^k, the notation [z^k](A(z)) is used to indicate the coefficient a_k (Sedgewick and Flajolet 1996). This corresponds to the Wolfram ...
A method of determining coefficients alpha_l in an expansion y(x)=y_0(x)+sum_(l=1)^qalpha_ly_l(x) so as to nullify the values of an ordinary differential equation L[y(x)]=0 ...
Let n objects be picked repeatedly with probability p_i that object i is picked on a given try, with sum_(i)p_i=1. Find the earliest time at which all n objects have been ...
Let F(n) be a family of partitions of n and let F(n,d) denote the set of partitions in F(n) with Durfee square of size d. The Durfee polynomial of F(n) is then defined as the ...
An exponential generating function for the integer sequence a_0, a_1, ... is a function E(x) such that E(x) = sum_(k=0)^(infty)a_k(x^k)/(k!) (1) = ...
The q-series identity product_(n=1)^(infty)((1-q^(2n))(1-q^(3n))(1-q^(8n))(1-q^(12n)))/((1-q^n)(1-q^(24n))) = ...
1 ... 97|98|99|100|101|102|103 ... 199 Previous Next

...