TOPICS
Search

Cahen's Constant


Cahen's constant is defined as

C=sum_(k=0)^(infty)((-1)^k)/(a_k-1)
(1)
=0.64341054628...
(2)

(OEIS A118227), where a_k is the kth term of Sylvester's sequence.


See also

Sylvester's Sequence

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Cahen, E. "Note sur un developpement des quantités numériques, qui presente quelque analogie avec celui des fractions continues." Nouv. Ann. Math. 10, 508-514, 1891.Shallit, J. and Davidson, J. L. "Continued Fractions for Some Alternating Series." Monatshefte Math. 111, 119-126, 1991.Sloane, N. J. A. Sequence A118227 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Cahen's Constant

Cite this as:

Weisstein, Eric W. "Cahen's Constant." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/CahensConstant.html

Subject classifications