TOPICS
Search

Search Results for ""


921 - 930 of 1981 for Power SumSearch Results
In common usage, an ordinal number is an adjective which describes the numerical position of an object, e.g., first, second, third, etc. In formal set theory, an ordinal ...
The identity sum_(y=0)^m(m; y)(w+m-y)^(m-y-1)(z+y)^y=w^(-1)(z+w+m)^m (Bhatnagar 1995, p. 51). There are a host of other such binomial identities.
alpha_n(z) = int_1^inftyt^ne^(-zt)dt (1) = n!z^(-(n+1))e^(-z)sum_(k=0)^(n)(z^k)/(k!). (2) It is equivalent to alpha_n(z)=E_(-n)(z), (3) where E_n(z) is the En-function.
A formal extension of the hypergeometric function to two variables, resulting in four kinds of functions (Appell 1925; Picard 1880ab, 1881; Goursat 1882; Whittaker and Watson ...
If f(x) is piecewise continuous and has a generalized Fourier series sum_(i)a_iphi_i(x) (1) with weighting function w(x), it must be true that ...
The boustrophedon ("ox-plowing") transform b of a sequence a is given by b_n = sum_(k=0)^(n)(n; k)a_kE_(n-k) (1) a_n = sum_(k=0)^(n)(-1)^(n-k)(n; k)b_kE_(n-k) (2) for n>=0, ...
The Cauchy product of two sequences f(n) and g(n) defined for nonnegative integers n is defined by (f degreesg)(n)=sum_(k=0)^nf(k)g(n-k).
The geometric mean is smaller than the arithmetic mean, (product_(i=1)^Nn_i)^(1/N)<=(sum_(i=1)^(N)n_i)/N, with equality in the cases (1) N=1 or (2) n_i=n_j for all i,j.
If (1-z)^(a+b-c)_2F_1(2a,2b;2c;z)=sum_(n=0)^inftya_nz^n, then where (a)_n is a Pochhammer symbol and _2F_1(a,b;c;z) is a hypergeometric function.
Define S_n(x) = sum_(k=1)^(infty)(sin(kx))/(k^n) (1) C_n(x) = sum_(k=1)^(infty)(cos(kx))/(k^n), (2) then the Clausen functions are defined by ...
1 ... 90|91|92|93|94|95|96 ... 199 Previous Next

...