Search Results for ""
451 - 460 of 1981 for Power SumSearch Results
![](/common/images/search/spacer.gif)
In his last letter to Hardy, Ramanujan defined 17 Jacobi theta function-like functions F(q) with |q|<1 which he called "mock theta functions" (Watson 1936ab, Ramanujan 1988, ...
Let Sigma(n)=sum_(i=1)^np_i (1) be the sum of the first n primes (i.e., the sum analog of the primorial function). The first few terms are 2, 5, 10, 17, 28, 41, 58, 77, ... ...
A composite knot is a knot that is not a prime knot. Schubert (1949) showed that every knot can be uniquely decomposed (up to the order in which the decomposition is ...
The total angular defect is the sum of the angular defects over all polyhedron vertices of a polyhedron, where the angular defect delta at a given polyhedron vertex is the ...
The summatory function Phi(n) of the totient function phi(n) is defined by Phi(n) = sum_(k=1)^(n)phi(k) (1) = sum_(m=1)^(n)msum_(d|m)(mu(d))/d (2) = ...
Euler's series transformation is a transformation that sometimes accelerates the rate of convergence for an alternating series. Given a convergent alternating series with sum ...
The value for zeta(2)=sum_(k=1)^infty1/(k^2) (1) can be found using a number of different techniques (Apostol 1983, Choe 1987, Giesy 1972, Holme 1970, Kimble 1987, Knopp and ...
A vector difference is the result of subtracting one vector from another. A vector difference is denoted using the normal minus sign, i.e., the vector difference of vectors A ...
If a function has a Fourier series given by f(x)=1/2a_0+sum_(n=1)^inftya_ncos(nx)+sum_(n=1)^inftyb_nsin(nx), (1) then Bessel's inequality becomes an equality known as ...
Borwein et al. (2004, pp. 4 and 44) term the expression of the integrals I_1 = int_0^1x^xdx (1) = 0.783430510... (2) I_2 = int_0^1(dx)/(x^x) (3) = 1.291285997... (4) (OEIS ...
![](/common/images/search/spacer.gif)
...