TOPICS
Search

Search Results for ""


1191 - 1200 of 1981 for Power SumSearch Results
The Lagrange interpolating polynomial is the polynomial P(x) of degree <=(n-1) that passes through the n points (x_1,y_1=f(x_1)), (x_2,y_2=f(x_2)), ..., (x_n,y_n=f(x_n)), and ...
Lauricella functions are generalizations of the Gauss hypergeometric functions to multiple variables. Four such generalizations were investigated by Lauricella (1893), and ...
The number (10^(666))!, where 666 is the beast number and n! denotes a factorial. The number has approximately 6.656×10^(668) decimal digits. The number of trailing zeros in ...
The limit test, also sometimes known as the nth term test, says that if lima_n!=0 or this limit does not exist as n tends to infinity, then the series suma_n does not ...
The n functions f_1(x), f_2(x), ..., f_n(x) are linearly dependent if, for some c_1, c_2, ..., c_n in R not all zero, sum_(i=1)^nc_if_i(x)=0 (1) for all x in some interval I. ...
Liouville's constant, sometimes also called Liouville's number, is the real number defined by L=sum_(n=1)^infty10^(-n!)=0.110001000000000000000001... (OEIS A012245). ...
The degree of a graph vertex of a graph is the number of graph edges which touch the graph vertex, also called the local degree. The graph vertex degree of a point A in a ...
For all integers n and |x|<a, lambda_n^((t))(x+a)=sum_(k=0)^infty|_n; k]lambda_(n-k)^((t))(a)x^k, where lambda_n^((t)) is the harmonic logarithm and |_n; k] is a Roman ...
Polynomials s_n(x) which form the Sheffer sequence for f^(-1)(t)=1+t-e^t, (1) where f^(-1)(t) is the inverse function of f(t), and have generating function ...
The minimal polynomial of a matrix A is the monic polynomial in A of smallest degree n such that p(A)=sum_(i=0)^nc_iA^i=0. (1) The minimal polynomial divides any polynomial q ...
1 ... 117|118|119|120|121|122|123 ... 199 Previous Next

...