Search Results for ""
1151 - 1160 of 1981 for Power SumSearch Results

The weighted mean of a discrete set of numbers {x_1,x_2,...,x_n} with weights {w_1,w_2,...,w_n} is given by <x>=sum_(i=1)^nw_ix_i, (1) where each weight w_i is a nonnegative ...
sum_(n=0)^(infty)[(q)_infty-(q)_n] = g(q)+(q)_inftysum_(k=1)^(infty)(q^k)/(1-q^k) (1) = g(q)+(q)_inftyL(q) (2) = g(q)+(q)_infty(psi_q(1)+ln(1-q))/(lnq) (3) = ...
D_q=1/(1-q)lim_(epsilon->0)(lnI(q,epsilon))/(ln(1/epsilon),) (1) where I(q,epsilon)=sum_(i=1)^Nmu_i^q, (2) epsilon is the box size, and mu_i is the natural measure. The ...
The exponential function has two different natural q-extensions, denoted e_q(z) and E_q(z). They are defined by e_q(z) = sum_(n=0)^(infty)(z^n)/((q;q)_n) (1) = _1phi_0[0; ...
The series h_q(-r)=sum_(n=1)^infty1/(q^n+r) (1) for q an integer other than 0 and +/-1. h_q and the related series Ln_q(-r+1)=sum_(n=1)^infty((-1)^n)/(q^n+r), (2) which is a ...
A cycle of a graph G, also called a circuit if the first vertex is not specified, is a subset of the edge set of G that forms a path such that the first node of the path ...
In general, a tetrahedron is a polyhedron with four sides. If all faces are congruent, the tetrahedron is known as an isosceles tetrahedron. If all faces are congruent to an ...
Schur (1916) proved that no matter how the set of positive integers less than or equal to |_n!e_| (where |_x_| is the floor function) is partitioned into n classes, one class ...
If {a_j} subset= D(0,1) (with possible repetitions) satisfies sum_(j=1)^infty(1-|a_j|)<=infty, where D(0,1) is the unit open disk, and no a_j=0, then there is a bounded ...
Let P(E_i) be the probability that E_i is true, and P( union _(i=1)^nE_i) be the probability that at least one of E_1, E_2, ..., E_n is true. Then "the" Bonferroni ...

...