Search Results for ""
721 - 730 of 1283 for Polynomial DiscriminantSearch Results
The important binomial theorem states that sum_(k=0)^n(n; k)r^k=(1+r)^n. (1) Consider sums of powers of binomial coefficients a_n^((r)) = sum_(k=0)^(n)(n; k)^r (2) = ...
A cycle of a graph G, also called a circuit if the first vertex is not specified, is a subset of the edge set of G that forms a path such that the first node of the path ...
An affine variety V is an algebraic variety contained in affine space. For example, {(x,y,z):x^2+y^2-z^2=0} (1) is the cone, and {(x,y,z):x^2+y^2-z^2=0,ax+by+cz=0} (2) is a ...
An amphichiral knot is a knot that is capable of being continuously deformed into its own mirror image. More formally, a knot K is amphichiral (also called achiral or ...
The (upper) clique number of a graph G, denoted omega(G), is the number of vertices in a maximum clique of G. Equivalently, it is the size of a largest clique or maximal ...
Also called Macaulay ring, a Cohen Macaulay ring is a Noetherian commutative unit ring R in which any proper ideal I of height n contains a sequence x_1, ..., x_n of elements ...
In the biconjugate gradient method, the residual vector r^((i)) can be regarded as the product of r^((0)) and an ith degree polynomial in A, i.e., r^((i))=P_i(A)r^((0)). (1) ...
The deltoidal icositetrahedral graph is Archimedean dual graph which is the skeleton of the deltoidal icositetrahedron. It is implemented in the Wolfram Language as ...
The disdyakis dodecahedral graph is Archimedean dual graph which is the skeleton of the disdyakis dodecahedron. It is implemented in the Wolfram Language as ...
The disdyakis triacontahedral graph is Archimedean dual graph which is the skeleton of the disdyakis triacontahedron. It is implemented in the Wolfram Language as ...
...
View search results from all Wolfram sites (8188 matches)

