TOPICS
Search

Search Results for ""


181 - 190 of 1283 for Polynomial DiscriminantSearch Results
Polynomials M_k(x) which form the associated Sheffer sequence for f(t)=(e^t-1)/(e^t+1) (1) and have the generating function sum_(k=0)^infty(M_k(x))/(k!)t^k=((1+t)/(1-t))^x. ...
The Poisson-Charlier polynomials c_k(x;a) form a Sheffer sequence with g(t) = e^(a(e^t-1)) (1) f(t) = a(e^t-1), (2) giving the generating function ...
Let n be an integer such that n>=lambda_1, where lambda=(lambda_1,lambda_2,...) is a partition of n=|lambda| if lambda_1>=lambda_2>=...>=0, where lambda_i are a sequence of ...
Let c_k be the number of vertex covers of a graph G of size k. Then the vertex cover polynomial Psi_G(x) is defined by Psi_G(x)=sum_(k=0)^(|G|)c_kx^k, (1) where |G| is the ...
Legendre showed that there is no rational algebraic function which always gives primes. In 1752, Goldbach showed that no polynomial with integer coefficients can give a prime ...
The Chebyshev polynomials of the first kind are a set of orthogonal polynomials defined as the solutions to the Chebyshev differential equation and denoted T_n(x). They are ...
The minimal polynomial of an algebraic number zeta is the unique irreducible monic polynomial of smallest degree p(x) with rational coefficients such that p(zeta)=0 and whose ...
The associated Legendre polynomials P_l^m(x) and P_l^(-m)(x) generalize the Legendre polynomials P_l(x) and are solutions to the associated Legendre differential equation, ...
Given a field F and an extension field K superset= F, if alpha in K is an algebraic element over F, the minimal polynomial of alpha over F is the unique monic irreducible ...
The maximal matching-generating polynomial M_G(x) for the graph G may be defined as the polynomial M_G(x)=sum_(k=nu_L(G))^(nu(G))m_kx^k, where nu_L(G) is the lower matching ...
1 ... 16|17|18|19|20|21|22 ... 129 Previous Next

...