Search Results for ""
171 - 180 of 1283 for Polynomial DiscriminantSearch Results
The minimal polynomial S_n(x) whose roots are sums and differences of the square roots of the first n primes, ...
Let c_k be the number of edge covers of a graph G of size k. Then the edge cover polynomial E_G(x) is defined by E_G(x)=sum_(k=0)^mc_kx^k, (1) where m is the edge count of G ...
The Lagrange interpolating polynomial is the polynomial P(x) of degree <=(n-1) that passes through the n points (x_1,y_1=f(x_1)), (x_2,y_2=f(x_2)), ..., (x_n,y_n=f(x_n)), and ...
Let l(x) be an nth degree polynomial with zeros at x_1, ..., x_n. Then the fundamental Hermite interpolating polynomials of the first and second kinds are defined by ...
An algebraically soluble equation of odd prime degree which is irreducible in the natural field possesses either 1. Only a single real root, or 2. All real roots.
This is proven in Rademacher and Toeplitz (1957).
The hypergeometric orthogonal polynomials defined by P_n^((lambda))(x;phi)=((2lambda)_n)/(n!)e^(inphi)_2F_1(-n,lambda+ix;2lambda;1-e^(-2iphi)), (1) where (x)_n is the ...
Orthogonal polynomials associated with weighting function w(x) = pi^(-1/2)kexp(-k^2ln^2x) (1) = pi^(-1/2)kx^(-k^2lnx) (2) for x in (0,infty) and k>0. Defining ...
A function, continuous in a finite closed interval, can be approximated with a preassigned accuracy by polynomials. A function of a real variable which is continuous and has ...
Polynomials m_k(x;beta,c) which form the Sheffer sequence for g(t) = ((1-c)/(1-ce^t))^beta (1) f(t) = (1-e^t)/(c^(-1)-e^t) (2) and have generating function ...
...
View search results from all Wolfram sites (8188 matches)

