TOPICS
Search

Search Results for ""


121 - 130 of 1283 for Polynomial DiscriminantSearch Results
The polynomials a_n^((beta))(x) given by the Sheffer sequence with g(t) = (1-t)^(-beta) (1) f(t) = ln(1-t), (2) giving generating function ...
Polynomials O_n(x) that can be defined by the sum O_n(x)=1/4sum_(k=0)^(|_n/2_|)(n(n-k-1)!)/(k!)(1/2x)^(2k-n-1) (1) for n>=1, where |_x_| is the floor function. They obey the ...
Polynomials s_k(x;lambda,mu) which are a generalization of the Boole polynomials, form the Sheffer sequence for g(t) = (1+e^(lambdat))^mu (1) f(t) = e^t-1 (2) and have ...
Polynomials P_k(x) which form the Sheffer sequence for g(t) = (2t)/(e^t-1) (1) f(t) = (e^t-1)/(e^t+1) (2) and have generating function ...
A polynomial given by Phi_n(x)=product_(k=1)^n^'(x-zeta_k), (1) where zeta_k are the roots of unity in C given by zeta_k=e^(2piik/n) (2) and k runs over integers relatively ...
Let Delta denote an integral convex polytope of dimension n in a lattice M, and let l_Delta(k) denote the number of lattice points in Delta dilated by a factor of the integer ...
There are two definitions of Bernoulli polynomials in use. The nth Bernoulli polynomial is denoted here by B_n(x) (Abramowitz and Stegun 1972), and the archaic form of the ...
The Jack polynomials are a family of multivariate orthogonal polynomials dependent on a positive parameter alpha. Orthogonality of the Jack polynomials is proved in Macdonald ...
The clique polynomial C_G(x) for the graph G is defined as the polynomial C_G(x)=1+sum_(k=1)^(omega(G))c_kx^k, (1) where omega(G) is the clique number of G, the coefficient ...
Krall and Fink (1949) defined the Bessel polynomials as the function y_n(x) = sum_(k=0)^(n)((n+k)!)/((n-k)!k!)(x/2)^k (1) = sqrt(2/(pix))e^(1/x)K_(-n-1/2)(1/x), (2) where ...
1 ... 10|11|12|13|14|15|16 ... 129 Previous Next

...