TOPICS
Search

Search Results for ""


71 - 80 of 765 for Poincare ConjectureSearch Results
There are at least two statements which go by the name of Artin's conjecture. If r is any complex finite-dimensional representation of the absolute Galois group of a number ...
Let the difference of successive primes be defined by d_n=p_(n+1)-p_n, and d_n^k by d_n^k={d_n for k=1; |d_(n+1)^(k-1)-d_n^(k-1)| for k>1. (1) N. L. Gilbreath claimed that ...
If n>1 and n|1^(n-1)+2^(n-1)+...+(n-1)^(n-1)+1, is n necessarily a prime? In other words, defining s_n=sum_(k=1)^(n-1)k^(n-1), does there exist a composite n such that s_n=-1 ...
The uniformity conjecture postulates a relationship between the syntactic length of expressions built up from the natural numbers using field operations, exponentials, and ...
For a finite group G, let p(G) be the subgroup generated by all the Sylow p-subgroups of G. If X is a projective curve in characteristic p>0, and if x_0, ..., x_t are points ...
If C_1, C_2, ...C_r are sets of positive integers and union _(i=1)^rC_i=Z^+, then some C_i contains arbitrarily long arithmetic progressions. The conjecture was proved by van ...
Also called the Tait flyping conjecture. Given two reduced alternating projections of the same knot, they are equivalent on the sphere iff they are related by a series of ...
Let n be a positive integer and r(n) the number of (not necessarily distinct) prime factors of n (with r(1)=0). Let O(m) be the number of positive integers <=m with an odd ...
Let p(n) be the first prime which follows a prime gap of n between consecutive primes. Shanks' conjecture holds that p(n)∼exp(sqrt(n)). Wolf conjectures a slightly different ...
Let gamma(G) denote the domination number of a simple graph G. Then Vizing (1963) conjectured that gamma(G)gamma(H)<=gamma(G×H), where G×H is the graph product. While the ...
1 ... 5|6|7|8|9|10|11 ... 77 Previous Next

...