TOPICS
Search

Search Results for ""


671 - 680 of 3330 for Piecewise functionSearch Results
The bei_nu(z) function is defined through the equation J_nu(ze^(3pii/4))=ber_nu(z)+ibei_nu(z), (1) where J_nu(z) is a Bessel function of the first kind, so ...
A reflection relation is a functional equation relating f(-x) to f(x), or more generally, f(a-x) to f(x). Perhaps the best known example of a reflection formula is the gamma ...
sum_(n=0)^(infty)(-1)^n[((2n-1)!!)/((2n)!!)]^3 = 1-(1/2)^3+((1·3)/(2·4))^3+... (1) = _3F_2(1/2,1/2,1/2; 1,1;-1) (2) = [_2F_1(1/4,1/4; 1;-1)]^2 (3) = ...
The number of binary bits necessary to represent a number, given explicitly by BL(n) = 1+|_lgn_| (1) = [lg(n+1)], (2) where [x] is the ceiling function, |_x_| is the floor ...
Given a Poisson distribution with a rate of change lambda, the distribution function D(x) giving the waiting times until the hth Poisson event is D(x) = ...
The nontrivial zeros of the Riemann zeta function correspond to the eigenvalues of some Hermitian operator (Derbyshire 2004, pp. 277-278).
Polynomials M_k(x) which form the associated Sheffer sequence for f(t)=(e^t-1)/(e^t+1) (1) and have the generating function sum_(k=0)^infty(M_k(x))/(k!)t^k=((1+t)/(1-t))^x. ...
The second-order ordinary differential equation x^2(d^2y)/(dx^2)+x(dy)/(dx)-(x^2+n^2)y=0. (1) The solutions are the modified Bessel functions of the first and second kinds, ...
The theta series of a lattice is the generating function for the number of vectors with norm n in the lattice. Theta series for a number of lattices are implemented in the ...
Special functions which arise as solutions to second order ordinary differential equations are commonly said to be "of the first kind" if they are nonsingular at the origin, ...
1 ... 65|66|67|68|69|70|71 ... 333 Previous Next

...