Search Results for ""
1931 - 1940 of 2438 for Partial differential equationSearch Results
The divergence theorem, more commonly known especially in older literature as Gauss's theorem (e.g., Arfken 1985) and also known as the Gauss-Ostrogradsky theorem, is a ...
The class of curve known as Dürer's conchoid appears in Dürer's work Instruction in Measurement with Compasses and Straight Edge (1525) and arose in investigations of ...
Consider a point P inside a reference triangle DeltaABC, construct line segments AP, BP, and CP. The Ehrmann congruent squares point is the unique point P such that three ...
The normal to an ellipse at a point P intersects the ellipse at another point Q. The angle corresponding to Q can be found by solving the equation (P-Q)·(dP)/(dt)=0 (1) for ...
Ellipsoidal harmonics of the second kind, also known as Lamé functions of the second kind, are variously defined as F_m^p(x)=(2m+1)E_m^p(x) ...
Let E be an elliptic curve defined over the field of rationals Q(sqrt(-d)) having equation y^2=x^3+ax+b with a and b integers. Let P be a point on E with integer coordinates ...
There exists a triangulation point Y for which the triangles BYC, CYA, and AYB have equal Brocard angles. This point is a triangle center known as the equi-Brocard center and ...
The Erdős-Borwein constant E, sometimes also denoted alpha, is the sum of the reciprocals of the Mersenne numbers, E = sum_(n=1)^(infty)1/(2^n-1) (1) = ...
A Euclidean number is a number which can be obtained by repeatedly solving the quadratic equation. Euclidean numbers, together with the rational numbers, can be constructed ...
_2F_1(a,b;c;z)=int_0^1(t^(b-1)(1-t)^(c-b-1))/((1-tz)^a)dt, (1) where _2F_1(a,b;c;z) is a hypergeometric function. The solution can be written using the Euler's ...
...