Search Results for ""
1121 - 1130 of 2438 for Partial differential equationSearch Results
An affine tensor is a tensor that corresponds to certain allowable linear coordinate transformations, T:x^_^i=a^i_jx^j, where the determinant of a^i_j is nonzero. This ...
A bilinear form on a real vector space is a function b:V×V->R that satisfies the following axioms for any scalar alpha and any choice of vectors v,w,v_1,v_2,w_1, and w_2. 1. ...
A Cartesian tensor is a tensor in three-dimensional Euclidean space. Unlike general tensors, there is no distinction between covariant and contravariant indices for Cartesian ...
If g(x) is differentiable at the point x and f(x) is differentiable at the point g(x), then f degreesg is differentiable at x. Furthermore, let y=f(g(x)) and u=g(x), then ...
A semi-Riemannian manifold M=(M,g) is said to be Lorentzian if dim(M)>=2 and if the index I=I_g associated with the metric tensor g satisfies I=1. Alternatively, a smooth ...
Low-dimensional topology usually deals with objects that are two-, three-, or four-dimensional in nature. Properly speaking, low-dimensional topology should be part of ...
A nonnegative function g(x,y) describing the "distance" between neighboring points for a given set. A metric satisfies the triangle inequality g(x,y)+g(y,z)>=g(x,z) (1) and ...
The index I associated to a symmetric, non-degenerate, and bilinear g over a finite-dimensional vector space V is a nonnegative integer defined by I=max_(W in S)(dimW) where ...
A smooth manifold M=(M,g) is said to be semi-Riemannian if the indexMetric Tensor Index of g is nonzero. Alternatively, a smooth manifold is semi-Riemannian provided that it ...
The metric tensor g on a smooth manifold M=(M,g) is said to be semi-Riemannian if the index of g is nonzero. In nearly all literature, the term semi-Riemannian is used ...
...