Search Results for ""
111 - 120 of 2438 for Partial differential equationSearch Results
The second-order ordinary differential equation (d^2y)/(dx^2)-2x(dy)/(dx)+lambday=0. (1) This differential equation has an irregular singularity at infty. It can be solved ...
The second-order ordinary differential equation y^('')+(y^')/x+(1-(nu^2)/(x^2))y=(x-nu)/(pix^2)sin(pinu) whose solutions are Anger functions.
The Laguerre differential equation is given by xy^('')+(1-x)y^'+lambday=0. (1) Equation (1) is a special case of the more general associated Laguerre differential equation, ...
There are a number of equations known as the Riccati differential equation. The most common is z^2w^('')+[z^2-n(n+1)]w=0 (1) (Abramowitz and Stegun 1972, p. 445; Zwillinger ...
Differential algebra is a field of mathematics that attempts to use methods from abstract algebra to study solutions of systems of polynomial nonlinear ordinary and partial ...
The second-order ordinary differential equation y^('')+2xy^'-2ny=0, (1) whose solutions may be written either y=Aerfc_n(x)+Berfc_n(-x), (2) where erfc_n(x) is the repeated ...
The complex second-order ordinary differential equation x^2y^('')+xy^'-(ix^2+nu^2)y=0 (1) (Abramowitz and Stegun 1972, p. 379; Zwillinger 1997, p. 123), whose solutions can ...
The ordinary differential equation z^2y^('')+zy^'+(z^2-nu^2)y=(4(1/2z)^(nu+1))/(sqrt(pi)Gamma(nu+1/2)), where Gamma(z) is the gamma function (Abramowitz and Stegun 1972, p. ...
The partial differential equation u_t+del ^4u+del ^2u+1/2|del u|^2=0, where del ^2 is the Laplacian, del ^4 is the biharmonic operator, and del is the gradient.
Some authors define a general Airy differential equation as y^('')+/-k^2xy=0. (1) This equation can be solved by series solution using the expansions y = ...
...