Search Results for ""
2131 - 2140 of 3638 for Ordinary Differential Equation Systemwit...Search Results
Poincaré's lemma says that on a contractible manifold, all closed forms are exact. While d^2=0 implies that all exact forms are closed, it is not always true that all closed ...
A nonzero vector v=(v_0,v_1,...,v_(n-1)) in n-dimensional Lorentzian space R^(1,n-1) is said to be positive lightlike if it has zero (Lorentzian) norm and if its first ...
Given n metric spaces X_1,X_2,...,X_n, with metrics g_1,g_2,...,g_n respectively, the product metric g_1×g_2×...×g_n is a metric on the Cartesian product X_1×X_2×...×X_n ...
The Ricci curvature tensor, also simply known as the Ricci tensor (Parker and Christensen 1994), is defined by R_(mukappa)=R^lambda_(mulambdakappa), where ...
The scalar curvature, also called the "curvature scalar" (e.g., Weinberg 1972, p. 135; Misner et al. 1973, p. 222) or "Ricci scalar," is given by R=g^(mukappa)R_(mukappa), ...
For a diagonal metric tensor g_(ij)=g_(ii)delta_(ij), where delta_(ij) is the Kronecker delta, the scale factor for a parametrization x_1=f_1(q_1,q_2,...,q_n), ...
Suppose f(x) is a function of x that is twice differentiable at a stationary point x_0. 1. If f^('')(x_0)>0, then f has a local minimum at x_0. 2. If f^('')(x_0)<0, then f ...
For d>=1, Omega an open subset of R^d, p in [1;+infty] and s in N, the Sobolev space W^(s,p)(R^d) is defined by W^(s,p)(Omega)={f in L^p(Omega): forall ...
A four-vector a_mu is said to be spacelike if its four-vector norm satisfies a_mua^mu>0. One should note that the four-vector norm is nothing more than a special case of the ...
The spherical distance between two points P and Q on a sphere is the distance of the shortest path along the surface of the sphere (paths that cut through the interior of the ...
...
View search results from all Wolfram sites (43087 matches)

