TOPICS
Search

Search Results for ""


131 - 140 of 947 for Operations on polynomialsSearch Results
A sequence s_n(x) is called a Sheffer sequence iff its generating function has the form sum_(k=0)^infty(s_k(x))/(k!)t^k=A(t)e^(xB(t)), (1) where A(t) = A_0+A_1t+A_2t^2+... ...
The Smale horseshoe map consists of a sequence of operations on the unit square. First, stretch in the y direction by more than a factor of two, then compress in the x ...
The polynomials a_n^((beta))(x) given by the Sheffer sequence with g(t) = (1-t)^(-beta) (1) f(t) = ln(1-t), (2) giving generating function ...
Polynomials b_n(x) which form a Sheffer sequence with g(t) = t/(e^t-1) (1) f(t) = e^t-1, (2) giving generating function sum_(k=0)^infty(b_k(x))/(k!)t^k=(t(t+1)^x)/(ln(1+t)). ...
(1) where H_n(x) is a Hermite polynomial (Watson 1933; Erdélyi 1938; Szegö 1975, p. 380). The generating function ...
Polynomials O_n(x) that can be defined by the sum O_n(x)=1/4sum_(k=0)^(|_n/2_|)(n(n-k-1)!)/(k!)(1/2x)^(2k-n-1) (1) for n>=1, where |_x_| is the floor function. They obey the ...
Polynomials P_k(x) which form the Sheffer sequence for g(t) = (2t)/(e^t-1) (1) f(t) = (e^t-1)/(e^t+1) (2) and have generating function ...
The Sendov conjecture, proposed by Blagovest Sendov circa 1958, that for a polynomial f(z)=(z-r_1)(z-r_2)...(z-r_n) with n>=2 and each root r_k located inside the closed unit ...
A symmetric function on n variables x_1, ..., x_n is a function that is unchanged by any permutation of its variables. In most contexts, the term "symmetric function" refers ...
Let G be an undirected graph, and let i denote the cardinal number of the set of externally active edges of a spanning tree T of G, j denote the cardinal number of the set of ...
1 ... 11|12|13|14|15|16|17 ... 95 Previous Next

...