TOPICS
Search

Search Results for ""


691 - 700 of 3164 for OTHER FUNCTIONSSearch Results
Given the sum-of-factorials function Sigma(n)=sum_(k=1)^nk!, SW(p) is the smallest integer for p prime such that Sigma[SW(p)] is divisible by p. If pSigma(n) for all n<p, ...
Formulas expressing trigonometric functions of an angle 2x in terms of functions of an angle x, sin(2x) = 2sinxcosx (1) cos(2x) = cos^2x-sin^2x (2) = 2cos^2x-1 (3) = ...
An ordinary differential equation (frequently called an "ODE," "diff eq," or "diffy Q") is an equality involving a function and its derivatives. An ODE of order n is an ...
The region 0<sigma<1, where sigma is defined as the real part of a complex number s=sigma+it. All nontrivial zeros (i.e., those not at negative even integers) of the Riemann ...
Dini's theorem is a result in real analysis relating pointwise convergence of sequences of functions to uniform convergence on a closed interval. For an increasing sequence ...
A generalization of Fermat's little theorem. Euler published a proof of the following more general theorem in 1736. Let phi(n) denote the totient function. Then a^(phi(n))=1 ...
Let sigma(n) be the divisor function. Then lim sup_(n->infty)(sigma(n))/(nlnlnn)=e^gamma, where gamma is the Euler-Mascheroni constant. Ramanujan independently discovered a ...
An integral transform which is often written as an ordinary Laplace transform involving the delta function. The Laplace transform and Dirichlet series are special cases of ...
A real-valued function g defined on a convex subset C subset R^n is said to be quasi-concave if for all real alpha in R, the set {x in C:g(x)>=alpha} is convex. This is ...
A real-valued function g defined on a convex subset C subset R^n is said to be quasi-convex if for all real alpha in R, the set {x in C:g(x)<alpha} is convex. This is ...
1 ... 67|68|69|70|71|72|73 ... 317 Previous Next

...