Search Results for ""
1411 - 1420 of 3164 for OTHER FUNCTIONSSearch Results
Laplace's integral is one of the following integral representations of the Legendre polynomial P_n(x), P_n(x) = 1/piint_0^pi(du)/((x+sqrt(x^2-1)cosu)^(n+1))du (1) = ...
A branch point whose neighborhood of values wrap around an infinite number of times as their complex arguments are varied. The point z=0 under the function lnz is therefore a ...
A coefficient of the Maclaurin series of 1/(ln(1+x))=1/x+1/2-1/(12)x+1/(24)x^2-(19)/(720)x^3+3/(160)x^4+... (OEIS A002206 and A002207), the multiplicative inverse of the ...
Expresses a function in terms of its Radon transform, f(x,y) = R^(-1)(Rf)(x,y) (1) = ...
If Omega subset= C is a domain and phi:Omega->C is a one-to-one analytic function, then phi(Omega) is a domain, and area(phi(Omega))=int_Omega|phi^'(z)|^2dxdy (Krantz 1999, ...
Mann's iteration is the dynamical system defined for a continuous function f:[0,1]->[0,1], x_n=1/nsum_(k=0)^(n-1)f(x_k) with x_0 in [0,1]. It can also be written ...
The integral transform (Kf)(x)=int_0^inftysqrt(xt)K_nu(xt)f(t)dt, where K_nu(x) is a modified Bessel function of the second kind. Note the lower limit of 0, not -infty as ...
A metric space is a set S with a global distance function (the metric g) that, for every two points x,y in S, gives the distance between them as a nonnegative real number ...
There exist lattices in n dimensions having hypersphere packing densities satisfying eta>=(zeta(n))/(2^(n-1)), where zeta(n) is the Riemann zeta function. However, the proof ...
The integral transform defined by (Kphi)(x)=int_0^inftyG_(pq)^(mn)(xt|(a_p); (b_q))phi(t)dt, where G_(pq)^(mn) is a Meijer G-function. Note the lower limit of 0, not -infty ...
...