TOPICS
Search

Search Results for ""


4371 - 4380 of 13135 for OTHER ANALYSISSearch Results
Schubert's application of the conservation of number principle.
Relates evolutes to single paths in the calculus of variations. Proved in the general case by Darboux and Zermelo in 1894 and Kneser in 1898. It states: "When a single ...
An agreement in which all parties feel as if they have received the best deal.
A 1-cusped epicycloid has b=a, so n=1. The radius measured from the center of the large circle for a 1-cusped epicycloid is given by epicycloid equation (◇) with n=1 so r^2 = ...
The evolute of the epicycloid x = (a+b)cost-bcos[((a+b)/b)t] (1) y = (a+b)sint-bsin[((a+b)/b)t] (2) is another epicycloid given by x = a/(a+2b){(a+b)cost+bcos[((a+b)/b)t]} ...
The involute of the epicycloid x = (a+b)cost-bcos[((a+b)/b)t] (1) y = (a+b)sint-bsin[((a+b)/b)t] (2) is another epicycloid given by x = (a+2b)/a{(a+b)cost+bcos[((a+b)/b)t]} ...
The radial curve of an epicycloid is shown above for an epicycloid with four cusps. Although it is claimed to be a rose curve by Lawrence (1972), it is not.
A morphism f:Y->X in a category is an epimorphism if, for any two morphisms u,v:X->Z, uf=vf implies u=v. In the categories of sets, groups, modules, etc., an epimorphism is ...
The epispiral is a plane curve with polar equation r=asec(ntheta). There are n sections if n is odd and 2n if n is even. A slightly more symmetric version considers instead ...
The inverse curve of the epispiral r=asec(ntheta) with inversion center at the origin and inversion radius k is the rose curve r=(kcos(ntheta))/a.
1 ... 435|436|437|438|439|440|441 ... 1314 Previous Next

...