Search Results for ""
2491 - 2500 of 13135 for OTHER ANALYSISSearch Results
An ellipsoid can be specified parametrically by x = acosusinv (1) y = bsinusinv (2) z = ccosv. (3) The geodesic parameters are then P = sin^2v(b^2cos^2u+a^2sin^2u) (4) Q = ...
The Euler polynomial E_n(x) is given by the Appell sequence with g(t)=1/2(e^t+1), (1) giving the generating function (2e^(xt))/(e^t+1)=sum_(n=0)^inftyE_n(x)(t^n)/(n!). (2) ...
Euler's series transformation is a transformation that sometimes accelerates the rate of convergence for an alternating series. Given a convergent alternating series with sum ...
The so-called explicit formula psi(x)=x-sum_(rho)(x^rho)/rho-ln(2pi)-1/2ln(1-x^(-2)) gives an explicit relation between prime numbers and Riemann zeta function zeros for x>1 ...
The first few values of product_(k=1)^(n)k! (known as a superfactorial) for n=1, 2, ... are given by 1, 2, 12, 288, 34560, 24883200, ... (OEIS A000178). The first few ...
The W polynomials obtained by setting p(x)=x and q(x)=1 in the Lucas polynomial sequence. (The corresponding w polynomials are called Lucas polynomials.) They have explicit ...
A method for solving an equation by approximating continuous quantities as a set of quantities at discrete points, often regularly spaced into a so-called grid or mesh. ...
Given a first-order ordinary differential equation (dy)/(dx)=F(x,y), (1) if F(x,y) can be expressed using separation of variables as F(x,y)=X(x)Y(y), (2) then the equation ...
Denote the nth derivative D^n and the n-fold integral D^(-n). Then D^(-1)f(t)=int_0^tf(xi)dxi. (1) Now, if the equation D^(-n)f(t)=1/((n-1)!)int_0^t(t-xi)^(n-1)f(xi)dxi (2) ...
There are three types of so-called fundamental forms. The most important are the first and second (since the third can be expressed in terms of these). The fundamental forms ...
...
View search results from all Wolfram sites (203794 matches)

