Search Results for ""
361 - 370 of 750 for Nth RootSearch Results
![](/common/images/search/spacer.gif)
There exist a variety of formulas for either producing the nth prime as a function of n or taking on only prime values. However, all such formulas require either extremely ...
The product of primes p_n#=product_(k=1)^np_k, (1) with p_n the nth prime, is called the primorial function, by analogy with the factorial function. Its logarithm is closely ...
As first shown by Meyer and Ritchie (1967), do-loops (which have a fixed iteration limit) are a special case of while-loops. A function that can be implemented using only ...
Let p_n be the nth prime, then the primorial (which is the analog of the usual factorial for prime numbers) is defined by p_n#=product_(k=1)^np_k. (1) The values of p_n# for ...
Pronic numbers are figurate numbers of the form P_n=2T_n=n(n+1), where T_n is the nth triangular number. The first few are 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, ... (OEIS ...
The nth Ramanujan prime is the smallest number R_n such that pi(x)-pi(x/2)>=n for all x>=R_n, where pi(x) is the prime counting function. In other words, there are at least n ...
Consider the sequence defined by w_1=01 and w_(n+1)=w_nw_nw_n^R, where l^R denotes the reverse of a sequence l. The first few terms are then 01, 010110, 010110010110011010, ...
Zeros of the Riemann zeta function zeta(s) come in two different types. So-called "trivial zeros" occur at all negative even integers s=-2, -4, -6, ..., and "nontrivial ...
The prime number theorem shows that the nth prime number p_n has the asymptotic value p_n∼nlnn (1) as n->infty (Havil 2003, p. 182). Rosser's theorem makes this a rigorous ...
Consider a game, first proposed by Nicolaus Bernoulli, in which a player bets on how many tosses of a coin will be needed before it first turns up heads. The player pays a ...
![](/common/images/search/spacer.gif)
...