Search Results for ""
1111 - 1120 of 2413 for Napoleon's TheoremSearch Results
![](/common/images/search/spacer.gif)
The 2-1 equation A^n+B^n=C^n (1) is a special case of Fermat's last theorem and so has no solutions for n>=3. Lander et al. (1967) give a table showing the smallest n for ...
The 10.1.2 equation A^(10)=B^(10)+C^(10) (1) is a special case of Fermat's last theorem with n=10, and so has no solution. No 10.1.n solutions are known with n<13. A 10.1.13 ...
The 7.1.2 equation A^7+B^7=C^7 (1) is a special case of Fermat's last theorem with n=7, and so has no solution. No solutions to the 7.1.3, 7.1.4, 7.1.5, 7.1.6 equations are ...
The 5.1.2 fifth-order Diophantine equation A^5=B^5+C^5 (1) is a special case of Fermat's last theorem with n=5, and so has no solution. improving on the results on Lander et ...
Let T be a central triangle and let U(T) be its unary cofactor triangle. Then T and U(T) are perspective, and their perspector is called the eigencenter of T. Let the A-, B-, ...
A triangle center alpha:beta:gamma is called a major triangle center if the triangle center function alpha=f(a,b,c,A,B,C) is a function of angle A alone, and therefore beta ...
The orthojoin of a point X=l:m:n is defined as the orthopole of the corresponding trilinear line lalpha+mbeta+ngamma. In other words, the orthojoin of Kimberling center X_i ...
The 9.1.2 equation A^9=B^9+C^9 (1) is a special case of Fermat's last theorem with n=9, and so has no solution. No 9.1.3, 9.1.4, 9.1.5, 9.1.6, 9.1.7, 9.1.8, or 9.1.9 ...
The 6.1.2 equation A^6=B^6+C^6 (1) is a special case of Fermat's last theorem with n=6, and so has no solution. No 6.1.n solutions are known for n<=6 (Lander et al. 1967; Guy ...
C. Kimberling has extensively tabulated and enumerated the properties of triangle centers (Kimberling 1994, 1998, and online), denoting the nth center in his numbering scheme ...
![](/common/images/search/spacer.gif)
...