TOPICS
Search

Search Results for ""


401 - 410 of 13135 for NUMBER SENSE /Properties/ RelationshipsSearch Results
As proved by Sierpiński (1960), there exist infinitely many positive odd numbers k such that k·2^n+1 is composite for every n>=1. Numbers k with this property are called ...
In 1638, Fermat proposed that every positive integer is a sum of at most three triangular numbers, four square numbers, five pentagonal numbers, and n n-polygonal numbers. ...
A number defined by b_n=b_n(0), where b_n(x) is a Bernoulli polynomial of the second kind (Roman 1984, p. 294), also called Cauchy numbers of the first kind. The first few ...
The relationship x succeeds (or follows) y is written x≻y. The relation x succeeds or is equal to y is written x>=y.
One form of van der Waerden's theorem states that for all positive integers k and r, there exists a constant n(r,k) such that if n_0>=n(r,k) and {1,2,...,n_0} subset C_1 ...
An identity is a mathematical relationship equating one quantity to another (which may initially appear to be different).
The signature s(K) of a knot K can be defined using the skein relationship s(unknot)=0 (1) s(K_+)-s(K_-) in {0,2}, (2) and 4|s(K)<->del (K)(2i)>0, (3) where del (K) is the ...
Given two topological spaces M and N, place an equivalence relationship on the continuous maps f:M->N using homotopies, and write f_1∼f_2 if f_1 is homotopic to f_2. Roughly ...
The eban numbers are the sequence of numbers whose names (in English) do not contain the letter "e" (i.e., "e" is "banned"). The name was coined by N. J. A. Sloane around ...
Apéry's numbers are defined by A_n = sum_(k=0)^(n)(n; k)^2(n+k; k)^2 (1) = sum_(k=0)^(n)([(n+k)!]^2)/((k!)^4[(n-k)!]^2) (2) = _4F_3(-n,-n,n+1,n+1;1,1,1;1), (3) where (n; k) ...
1 ... 38|39|40|41|42|43|44 ... 1314 Previous Next

...