Search Results for ""
3161 - 3170 of 4142 for Multiply whole numbers and integersSearch Results

Engineering notation is a version of scientific notation in which the exponent p in expressions of the form a×10^p is chosen to always be divisible by 3. Numbers of forms ...
Fractran is an algorithm applied to a given list f_1, f_2, ..., f_k of fractions. Given a starting integer N, the FRACTRAN algorithm proceeds by repeatedly multiplying the ...
The converse of Fermat's little theorem is also known as Lehmer's theorem. It states that, if an integer x is prime to m and x^(m-1)=1 (mod m) and there is no integer e<m-1 ...
Let (x_1,x_2) and (y_1,y_2) be two sets of complex numbers linearly independent over the rationals. Then the four exponential conjecture posits that at least one of ...
Let f(x) be a monic polynomial of degree d with discriminant Delta. Then an odd integer n with (n,f(0)Delta)=1 is called a Frobenius pseudoprime with respect to f(x) if it ...
The function z=f(x)=ln(x/(1-x)). (1) This function has an inflection point at x=1/2, where f^('')(x)=(2x-1)/(x^2(x-1)^2)=0. (2) Applying the logit transformation to values ...
Lucas's theorem states that if n>=3 be a squarefree integer and Phi_n(z) a cyclotomic polynomial, then Phi_n(z)=U_n^2(z)-(-1)^((n-1)/2)nzV_n^2(z), (1) where U_n(z) and V_n(z) ...
A method for computing the prime counting function. Define the function T_k(x,a)=(-1)^(beta_0+beta_1+...+beta_(a-1))|_x/(p_1^(beta_0)p_2^(beta_1)...p_a^(beta_(a-1)))_|, (1) ...
The second theorem of Mertens states that the asymptotic form of the harmonic series for the sum of reciprocal primes is given by sum_(p<=x)1/p=lnlnx+B_1+o(1), where p is a ...
The Morgan-Voyce polynomials are polynomials related to the Brahmagupta and Fibonacci polynomials. They are defined by the recurrence relations b_n(x) = ...

...