Search Results for ""
621 - 630 of 1664 for Logistic EquationSearch Results
![](/common/images/search/spacer.gif)
A modular inverse of an integer b (modulo m) is the integer b^(-1) such that bb^(-1)=1 (mod m). A modular inverse can be computed in the Wolfram Language using PowerMod[b, ...
The Morgan-Voyce polynomials are polynomials related to the Brahmagupta and Fibonacci polynomials. They are defined by the recurrence relations b_n(x) = ...
The equation of incompressible fluid flow, (partialu)/(partialt)+u·del u=-(del P)/rho+nudel ^2u, where nu is the kinematic viscosity, u is the velocity of the fluid parcel, P ...
Polynomials O_n(x) that can be defined by the sum O_n(x)=1/4sum_(k=0)^(|_n/2_|)(n(n-k-1)!)/(k!)(1/2x)^(2k-n-1) (1) for n>=1, where |_x_| is the floor function. They obey the ...
A graphical plot which can be used for solving certain types of equations. According to Steinhaus (1999, p. 301), the Nomogram was invented by the French mathematicians ...
A number which is simultaneously a nonagonal number N_m and heptagonal number Hep_n and therefore satisfies the Diophantine equation 1/2m(7m-5)=1/2n(5n-4). (1) Completing the ...
A number which is simultaneously a nonagonal number N_m and hexagonal number Hex_n and therefore satisfies the Diophantine equation 1/2m(7m-5)=n(2n-1). (1) Completing the ...
A number which is simultaneously a nonagonal number N_m and octagonal number O_n and therefore satisfies the Diophantine equation 1/2m(7m-5)=n(3n-2). (1) Completing the ...
A number which is simultaneously a nonagonal number N_m and pentagonal number P_n and therefore satisfies the Diophantine equation 1/2m(7m-5)=1/2n(3n-1). (1) Completing the ...
A number which is simultaneously a nonagonal number N_m and a square number S_n and therefore satisfies the Diophantine equation 1/2m(7m-5)=n^2. (1) Completing the square and ...
![](/common/images/search/spacer.gif)
...