Search Results for ""
681 - 690 of 2765 for Linear Recurrence EquationSearch Results

Let H_n denote the nth hexagonal number and S_m the mth square number, then a number which is both hexagonal and square satisfies the equation H_n=S_m, or n(2n-1)=m^2. (1) ...
The Lommel polynomials R_(m,nu)(z) arise from the equation J_(m+nu)(z)=J_nu(z)R_(m,nu)(z)-J_(nu-1)(z)R_(m-1,nu+1)(z), (1) where J_nu(z) is a Bessel function of the first kind ...
The Morgan-Voyce polynomials are polynomials related to the Brahmagupta and Fibonacci polynomials. They are defined by the recurrence relations b_n(x) = ...
Polynomials O_n(x) that can be defined by the sum O_n(x)=1/4sum_(k=0)^(|_n/2_|)(n(n-k-1)!)/(k!)(1/2x)^(2k-n-1) (1) for n>=1, where |_x_| is the floor function. They obey the ...
A reflection relation is a functional equation relating f(-x) to f(x), or more generally, f(a-x) to f(x). Perhaps the best known example of a reflection formula is the gamma ...
Consider the recurrence equation defined by a_0=m and a_n=|_sqrt(2a_(n-1)(a_(n-1)+1))_|, (1) where |_x_| is the floor function. Graham and Pollak actually defined a_1=m, but ...
The recursive sequence generated by the recurrence equation Q(n)=Q(n-Q(n-1))+Q(n-Q(n-2)), with Q(1)=Q(2)=1. The first few values are 1, 1, 2, 3, 3, 4, 5, 5, 6, 6, ... (OEIS ...
A number which is simultaneously square and triangular. Let T_n denote the nth triangular number and S_m the mth square number, then a number which is both triangular and ...
The second solution Q_l(x) to the Legendre differential equation. The Legendre functions of the second kind satisfy the same recurrence relation as the Legendre polynomials. ...
The Markov numbers m are the union of the solutions (x,y,z) to the Markov equation x^2+y^2+z^2=3xyz, (1) and are related to Lagrange numbers L_n by L_n=sqrt(9-4/(m^2)). (2) ...

...