Search Results for ""
41 - 50 of 1641 for Legendre Functionofthe Second KindSearch Results

Let 0<k^2<1. The incomplete elliptic integral of the third kind is then defined as Pi(n;phi,k) = int_0^phi(dtheta)/((1-nsin^2theta)sqrt(1-k^2sin^2theta)) (1) = ...
The first solution to Lamé's differential equation, denoted E_n^m(x) for m=1, ..., 2n+1. They are also called Lamé functions. The product of two ellipsoidal harmonics of the ...
A Fredholm integral equation of the first kind is an integral equation of the form f(x)=int_a^bK(x,t)phi(t)dt, (1) where K(x,t) is the kernel and phi(t) is an unknown ...
The Bessel functions of the first kind J_n(x) are defined as the solutions to the Bessel differential equation x^2(d^2y)/(dx^2)+x(dy)/(dx)+(x^2-n^2)y=0 (1) which are ...
A second countable space is a topological space whose topology is second countable.
The associated Legendre polynomials P_l^m(x) and P_l^(-m)(x) generalize the Legendre polynomials P_l(x) and are solutions to the associated Legendre differential equation, ...
The spherical Bessel function of the first kind, denoted j_nu(z), is defined by j_nu(z)=sqrt(pi/(2z))J_(nu+1/2)(z), (1) where J_nu(z) is a Bessel function of the first kind ...
A Sierpiński number of the first kind is a number of the form S_n=n^n+1. The first few are 2, 5, 28, 257, 3126, 46657, 823544, 16777217, ... (OEIS A014566). Sierpiński proved ...
A subset E of a topological space S is said to be of second category in S if E cannot be written as the countable union of subsets which are nowhere dense in S, i.e., if ...
The confluent hypergeometric function of the first kind _1F_1(a;b;z) is a degenerate form of the hypergeometric function _2F_1(a,b;c;z) which arises as a solution the ...

...