Search Results for ""
681 - 690 of 1712 for Legendre Diffrential EquationSearch Results
The invertible matrix theorem is a theorem in linear algebra which gives a series of equivalent conditions for an n×n square matrix A to have an inverse. In particular, A is ...
The Jackson-Slater identity is the q-series identity of Rogers-Ramanujan-type given by sum_(k=0)^(infty)(q^(2k^2))/((q)_(2k)) = ...
A curve also known as Gutschoven's curve which was first studied by G. van Gutschoven around 1662 (MacTutor Archive). It was also studied by Newton and, some years later, by ...
Kelvin defined the Kelvin functions bei and ber according to ber_nu(x)+ibei_nu(x) = J_nu(xe^(3pii/4)) (1) = e^(nupii)J_nu(xe^(-pii/4)), (2) = e^(nupii/2)I_nu(xe^(pii/4)) (3) ...
If any set of points is displaced by X^idx_i where all distance relationships are unchanged (i.e., there is an isometry), then the vector field is called a Killing vector. ...
Generalizing from a straight line (i.e., first degree polynomial) to a kth degree polynomial y=a_0+a_1x+...+a_kx^k, (1) the residual is given by ...
A point about which inversion of two circles produced concentric circles. Every pair of distinct circles has two limiting points. The limiting points correspond to the point ...
The continuous distribution with parameters m and b>0 having probability and distribution functions P(x) = (e^(-(x-m)/b))/(b[1+e^(-(x-m)/b)]^2) (1) D(x) = 1/(1+e^(-(x-m)/b)) ...
The Lommel polynomials R_(m,nu)(z) arise from the equation J_(m+nu)(z)=J_nu(z)R_(m,nu)(z)-J_(nu-1)(z)R_(m-1,nu+1)(z), (1) where J_nu(z) is a Bessel function of the first kind ...
The Maltese cross curve is the cubic algebraic curve with Cartesian equation xy(x^2-y^2)=x^2+y^2 (1) and polar equation r=2/(sqrt(sin(4theta))) (2) (Cundy and Rollett 1989, ...
...
View search results from all Wolfram sites (26256 matches)

