Search Results for ""
2171 - 2180 of 2358 for Legendre Differential EquationSearch Results
![](/common/images/search/spacer.gif)
The recursive sequence defined by the recurrence relation a(n)=a(a(n-1))+a(n-a(n-1)) (1) with a(1)=a(2)=1. The first few values are 1, 1, 2, 2, 3, 4, 4, 4, 5, 6, ... (OEIS ...
The recursive sequence generated by the recurrence equation Q(n)=Q(n-Q(n-1))+Q(n-Q(n-2)), with Q(1)=Q(2)=1. The first few values are 1, 1, 2, 3, 3, 4, 5, 5, 6, 6, ... (OEIS ...
An International Standard Book Number (ISBN) is a code used to uniquely identify a book together. It also uniquely encodes the book's publisher and includes information about ...
The inverse cosine is the multivalued function cos^(-1)z (Zwillinger 1995, p. 465), also denoted arccosz (Abramowitz and Stegun 1972, p. 79; Harris and Stocker 1998, p. 307; ...
Let R(z) be a rational function R(z)=(P(z))/(Q(z)), (1) where z in C^*, C^* is the Riemann sphere C union {infty}, and P and Q are polynomials without common divisors. The ...
A Kähler structure on a complex manifold M combines a Riemannian metric on the underlying real manifold with the complex structure. Such a structure brings together geometry ...
A k×n Latin rectangle is a k×n matrix with elements a_(ij) in {1,2,...,n} such that entries in each row and column are distinct. If k=n, the special case of a Latin square ...
The nth root of the denominator B_n of the nth convergent A_n/B_n of a number x tends to a constant lim_(n->infty)B_n^(1/n) = e^beta (1) = e^(pi^2/(12ln2)) (2) = 3.275823... ...
The function lambda(n)=(-1)^(Omega(n)), (1) where Omega(n) is the number of not necessarily distinct prime factors of n, with Omega(1)=0. The values of lambda(n) for n=1, 2, ...
Liouville's constant, sometimes also called Liouville's number, is the real number defined by L=sum_(n=1)^infty10^(-n!)=0.110001000000000000000001... (OEIS A012245). ...
![](/common/images/search/spacer.gif)
...