TOPICS
Search

Search Results for ""


101 - 110 of 2358 for Legendre Differential EquationSearch Results
The Legendre polynomials, sometimes called Legendre functions of the first kind, Legendre coefficients, or zonal harmonics (Whittaker and Watson 1990, p. 302), are solutions ...
The second solution Q_l(x) to the Legendre differential equation. The Legendre functions of the second kind satisfy the same recurrence relation as the Legendre polynomials. ...
An inhomogeneous linear ordinary differential equation with constant coefficients is an ordinary differential equation in which coefficients are constants (i.e., not ...
In elliptic cylindrical coordinates, the scale factors are h_u=h_v=sqrt(sinh^2u+sin^2v), h_z=1, and the separation functions are f_1(u)=f_2(v)=f_3(z)=1, giving a Stäckel ...
A homogeneous linear ordinary differential equation with constant coefficients is an ordinary differential equation in which coefficients are constants (i.e., not functions), ...
If one solution (y_1) to a second-order ordinary differential equation y^('')+P(x)y^'+Q(x)y=0 (1) is known, the other (y_2) may be found using the so-called reduction of ...
In parabolic cylindrical coordinates, the scale factors are h_u=h_v=sqrt(u^2+v^2), h_z=1 and the separation functions are f_1(u)=f_2(v)=f_3(z)=1, giving Stäckel determinant ...
In cylindrical coordinates, the scale factors are h_r=1, h_theta=r, h_z=1, so the Laplacian is given by del ...
To solve the system of differential equations (dx)/(dt)=Ax(t)+p(t), (1) where A is a matrix and x and p are vectors, first consider the homogeneous case with p=0. The ...
As shown by Morse and Feshbach (1953), the Helmholtz differential equation is separable in confocal paraboloidal coordinates.
1 ... 8|9|10|11|12|13|14 ... 236 Previous Next

...