TOPICS
Search

Search Results for ""


1181 - 1190 of 2736 for Isotropic lineSearch Results
The sequence of six 9s which begins at the 762nd decimal place of pi, pi=3.14159...134999999_()_(six 9s)837... (Wells 1986, p. 51). The positions of the first occurrences of ...
The Fibonacci factorial constant is the constant appearing in the asymptotic growth of the fibonorials (aka. Fibonacci factorials) n!_F. It is given by the infinite product ...
Let psi = 1+phi (1) = 1/2(3+sqrt(5)) (2) = 2.618033... (3) (OEIS A104457), where phi is the golden ratio, and alpha = lnphi (4) = 0.4812118 (5) (OEIS A002390). Define the ...
The fibonomial coefficient (sometimes also called simply the Fibonacci coefficient) is defined by [m; k]_F=(F_mF_(m-1)...F_(m-k+1))/(F_1F_2...F_k), (1) where [m; 0]_F=1 and ...
The fibonorial n!_F, also called the Fibonacci factorial, is defined as n!_F=product_(k=1)^nF_k, where F_k is a Fibonacci number. For n=1, 2, ..., the first few fibonorials ...
The q-series identity product_(n=1)^(infty)((1-q^(2n))(1-q^(3n))(1-q^(8n))(1-q^(12n)))/((1-q^n)(1-q^(24n))) = ...
The Flint Hills series is the series S_1=sum_(n=1)^infty(csc^2n)/(n^3) (Pickover 2002, p. 59). It is not known if this series converges, since csc^2n can have sporadic large ...
A problem listed in a fall issue of Gazeta Matematică in the mid-1970s posed the question if x_1>0 and x_(n+1)=(1+1/(x_n))^n (1) for n=1, 2, ..., then are there any values ...
Let (x_1,x_2) and (y_1,y_2) be two sets of complex numbers linearly independent over the rationals. Then the four exponential conjecture posits that at least one of ...
The "Foxtrot series" is a mathematical sum that appeared in the June 2, 1996 comic strip FoxTrot by Bill Amend (Amend 1998, p. 19; Mitchell 2006/2007). It arose from a ...
1 ... 116|117|118|119|120|121|122 ... 274 Previous Next

...