Search Results for ""
161 - 170 of 1038 for Involutory matrixSearch Results
The minimal polynomial of a matrix A is the monic polynomial in A of smallest degree n such that p(A)=sum_(i=0)^nc_iA^i=0. (1) The minimal polynomial divides any polynomial q ...
Combinatorial matrix theory is a rich branch of mathematics that combines combinatorics, graph theory, and linear algebra. It includes the theory of matrices with prescribed ...
An alternating sign matrix is a matrix of 0s, 1s, and -1s in which the entries in each row or column sum to 1 and the nonzero entries in each row and column alternate in ...
Let (a)_i be a sequence of complex numbers and let the lower triangular matrices F=(f)_(nk) and G=(g)_(nk) be defined as f_(nk)=(product_(j=k)^(n-1)(a_j+k))/((n-k)!) and ...
Let (a)_i and (b)_i be sequences of complex numbers such that b_j!=b_k for j!=k, and let the lower triangular matrices F=(f)_(nk) and G=(g)_(nk) be defined as ...
The conjecture that the number of alternating sign matrices "bordered" by +1s A_n is explicitly given by the formula A_n=product_(j=0)^(n-1)((3j+1)!)/((n+j)!). This ...
Two matrices A and B are said to be equal iff a_(ij)=b_(ij) (1) for all i,j. Therefore, [1 2; 3 4]=[1 2; 3 4], (2) while [1 2; 3 4]!=[0 2; 3 4]. (3)
Given a system of two ordinary differential equations x^. = f(x,y) (1) y^. = g(x,y), (2) let x_0 and y_0 denote fixed points with x^.=y^.=0, so f(x_0,y_0) = 0 (3) g(x_0,y_0) ...
The eight Gell-Mann matrices lambda_i, i=1,...,8, are an example of the set of generators of the Lie algebra associated to the special unitary group SU(3). Explicitly, these ...
The generalized Gell-Mann matrices are the n^2-1 matrices generating the Lie algebra associated to the special unitary group SU(n), n>=2. As their name suggests, these ...
...
View search results from all Wolfram sites (16674 matches)

