TOPICS
Search

Search Results for ""


821 - 830 of 3574 for Inverse FunctionsSearch Results
The region 0<sigma<1, where sigma is defined as the real part of a complex number s=sigma+it. All nontrivial zeros (i.e., those not at negative even integers) of the Riemann ...
Dini's theorem is a result in real analysis relating pointwise convergence of sequences of functions to uniform convergence on a closed interval. For an increasing sequence ...
A generalization of Fermat's little theorem. Euler published a proof of the following more general theorem in 1736. Let phi(n) denote the totient function. Then a^(phi(n))=1 ...
Let sigma(n) be the divisor function. Then lim sup_(n->infty)(sigma(n))/(nlnlnn)=e^gamma, where gamma is the Euler-Mascheroni constant. Ramanujan independently discovered a ...
An integral transform which is often written as an ordinary Laplace transform involving the delta function. The Laplace transform and Dirichlet series are special cases of ...
A real-valued function g defined on a convex subset C subset R^n is said to be quasi-concave if for all real alpha in R, the set {x in C:g(x)>=alpha} is convex. This is ...
A real-valued function g defined on a convex subset C subset R^n is said to be quasi-convex if for all real alpha in R, the set {x in C:g(x)<alpha} is convex. This is ...
A function whose range is in the complex numbers is said to be a complex function, or a complex-valued function.
The hyperbolic cotangent is defined as cothz=(e^z+e^(-z))/(e^z-e^(-z))=(e^(2z)+1)/(e^(2z)-1). (1) The notation cthz is sometimes also used (Gradshteyn and Ryzhik 2000, p. ...
The hyperbolic secant is defined as sechz = 1/(coshz) (1) = 2/(e^z+e^(-z)), (2) where coshz is the hyperbolic cosine. It is implemented in the Wolfram Language as Sech[z]. On ...
1 ... 80|81|82|83|84|85|86 ... 358 Previous Next

...