Search Results for ""
671 - 680 of 3574 for Inverse FunctionsSearch Results
The entire function B(z) = [(sin(piz))/pi]^2[2/z+sum_(n=0)^(infty)1/((z-n)^2)-sum_(n=1)^(infty)1/((z+n)^2)] (1) = 1-(2sin^2(piz))/(pi^2z^2)[z^2psi_1(z)-z-1], (2) where ...
Binet's first formula for the log gamma function lnGamma(z), where Gamma(z) is a gamma function, is given by for R[z]>0 (Erdélyi et al. 1981, p. 21; Whittaker and Watson ...
The circle method is a method employed by Hardy, Ramanujan, and Littlewood to solve many asymptotic problems in additive number theory, particularly in deriving an asymptotic ...
Elliptic alpha functions relate the complete elliptic integrals of the first K(k_r) and second kinds E(k_r) at elliptic integral singular values k_r according to alpha(r) = ...
The invariants of a Weierstrass elliptic function P(z|omega_1,omega_2) are defined by the Eisenstein series g_2(omega_1,omega_2) = 60sum^'_(m,n)Omega_(mn)^(-4) (1) ...
The case of the Weierstrass elliptic function with invariants g_2=0 and g_3=1. The corresponding real half-period is given by omega_2 = (Gamma^3(1/3))/(4pi) (1) = ...
An elliptic function can be characterized by its real and imaginary half-periods omega_1 and omega_2 (Whittaker and Watson 1990, p. 428), sometimes also denoted ...
The forward and inverse Kontorovich-Lebedev transforms are defined by K_(ix)[f(t)] = int_0^inftyK_(ix)(t)f(t)dt (1) K_(ix)^(-1)[g(t)] = ...
The orthoptic circle of the Steiner inellipse is the circle with center at alpha_2=1/a, (1) corresponding to the triangle centroid G and radius ...
A figurate number which is given by Ptop_n=1/4Te_n(n+3)=1/(24)n(n+1)(n+2)(n+3), where Te_n is the nth tetrahedral number. The first few pentatope numbers are 1, 5, 15, 35, ...
...
View search results from all Wolfram sites (501482 matches)

