Search Results for ""
51 - 60 of 3574 for Inverse FunctionsSearch Results
The functions theta_s(u) = (H(u))/(H^'(0)) (1) theta_d(u) = (Theta(u+K))/(Theta(k)) (2) theta_c(u) = (H(u))/(H(K)) (3) theta_n(u) = (Theta(u))/(Theta(0)), (4) where H(u) and ...
The n functions f_1(x), f_2(x), ..., f_n(x) are linearly dependent if, for some c_1, c_2, ..., c_n in R not all zero, sum_(i=1)^nc_if_i(x)=0 (1) for all x in some interval I. ...
Functions which have derivatives of all orders at all points and which, together with their derivatives, fall off at least as rapidly as |x|^(-n) as |x|->infty, no matter how ...
In an additive group G, the additive inverse of an element a is the element a^' such that a+a^'=a^'+a=0, where 0 is the additive identity of G. Usually, the additive inverse ...
In a monoid or multiplicative group where the operation is a product ·, the multiplicative inverse of any element g is the element g^(-1) such that g·g^(-1)=g^(-1)·g=1, with ...
A modular inverse of an integer b (modulo m) is the integer b^(-1) such that bb^(-1)=1 (mod m). A modular inverse can be computed in the Wolfram Language using PowerMod[b, ...
The inverse of a square matrix A, sometimes called a reciprocal matrix, is a matrix A^(-1) such that AA^(-1)=I, (1) where I is the identity matrix. Courant and Hilbert (1989, ...
The Drazin inverse is a matrix inverse-like object derived from a given square matrix. In particular, let the index k of a square matrix be defined as the smallest ...
Given a circle C with center O and radius k, then two points P and Q are inverse with respect to C if OP·OQ=k^2. If P describes a curve C_1, then Q describes a curve C_2 ...
The inverse limit of a family of R-modules is the dual notion of a direct limit and is characterized by the following mapping property. For a directed set I and a family of ...
...
View search results from all Wolfram sites (501482 matches)

