Search Results for ""
31 - 40 of 3574 for Inverse FunctionsSearch Results
For a real positive t, the Riemann-Siegel Z function is defined by Z(t)=e^(itheta(t))zeta(1/2+it). (1) This function is sometimes also called the Hardy function or Hardy ...
Fok (1946) and Hazewinkel (1988, p. 65) call v(z) = 1/2sqrt(pi)Ai(z) (1) w_1(z) = 2e^(ipi/6)v(omegaz) (2) w_2(z) = 2e^(-ipi/6)v(omega^(-1)z), (3) where Ai(z) is an Airy ...
Inverse function integration is an indefinite integration technique. While simple, it is an interesting application of integration by parts. If f and f^(-1) are inverses of ...
In 1757, V. Riccati first recorded the generalizations of the hyperbolic functions defined by F_(n,r)^alpha(x)=sum_(k=0)^infty(alpha^k)/((nk+r)!)x^(nk+r), (1) for r=0, ..., ...
Let psi = 1+phi (1) = 1/2(3+sqrt(5)) (2) = 2.618033... (3) (OEIS A104457), where phi is the golden ratio, and alpha = lnphi (4) = 0.4812118 (5) (OEIS A002390). Define the ...
The Jacobi theta functions are the elliptic analogs of the exponential function, and may be used to express the Jacobi elliptic functions. The theta functions are ...
Ramanujan's two-variable theta function f(a,b) is defined by f(a,b)=sum_(n=-infty)^inftya^(n(n+1)/2)b^(n(n-1)/2) (1) for |ab|<1 (Berndt 1985, p. 34; Berndt et al. 2000). It ...
Any symmetric polynomial (respectively, symmetric rational function) can be expressed as a polynomial (respectively, rational function) in the elementary symmetric ...
The functions (also called the circular functions) comprising trigonometry: the cosecant cscx, cosine cosx, cotangent cotx, secant secx, sine sinx, and tangent tanx. However, ...
The inverse Gaussian distribution, also known as the Wald distribution, is the distribution over [0,infty) with probability density function and distribution function given ...
...
View search results from all Wolfram sites (501482 matches)

