Search Results for ""
2391 - 2400 of 3574 for Inverse FunctionsSearch Results
Let Xi be the xi-function defined by Xi(iz)=1/2(z^2-1/4)pi^(-z/2-1/4)Gamma(1/2z+1/4)zeta(z+1/2). (1) Xi(z/2)/8 can be viewed as the Fourier transform of the signal ...
The de Longchamps circle is defined as the radical circle of the power circles of a given reference triangle. It is defined only for obtuse triangles. It is the complement of ...
The de Longchamps point L is the reflection of the orthocenter H about the circumcenter O of a triangle. It has triangle center function alpha=cosA-cosBcosC, (1) and is ...
Given a real number q>1, the series x=sum_(n=0)^inftya_nq^(-n) is called the q-expansion, or beta-expansion (Parry 1957), of the positive real number x if, for all n>=0, ...
Let a_(n+1) = 1/2(a_n+b_n) (1) b_(n+1) = (2a_nb_n)/(a_n+b_n). (2) Then A(a_0,b_0)=lim_(n->infty)a_n=lim_(n->infty)b_n=sqrt(a_0b_0), (3) which is just the geometric mean.
The geometric mean is smaller than the arithmetic mean, (product_(i=1)^Nn_i)^(1/N)<=(sum_(i=1)^(N)n_i)/N, with equality in the cases (1) N=1 or (2) n_i=n_j for all i,j.
Cis(x) is another name for the complex exponential, Cis(x)=e^(ix)=cosx+isinx. (1) It has derivative d/(dz)Cis(z)=ie^(iz) (2) and indefinite integral intCis(z)dz=-ie^(iz). (3)
The logarithm of the reciprocal of a number, equal to the negative of the logarithm of the number itself, cologx=log(1/x)=-logx.
If (1+xsin^2alpha)sinbeta=(1+x)sinalpha, then (1+x)int_0^alpha(dphi)/(sqrt(1-x^2sin^2phi))=int_0^beta(dphi)/(sqrt(1-(4x)/((1+x)^2)sin^2phi)).
The least positive integer m^* with the property that chi(y)=1 whenever y=1 (mod m^*) and (y,m)=1.
...
View search results from all Wolfram sites (501482 matches)

