Search Results for ""
181 - 190 of 3574 for Inverse FunctionsSearch Results
The logarithmic derivative of a function f is defined as the derivative of the logarithm of a function. For example, the digamma function is defined as the logarithmic ...
where _3F_2(a,b,c;d,e;z) is a generalized hypergeometric function and Gamma(z) is the gamma function (Bailey 1935, p. 16; Koepf 1998, p. 32).
An even Walsh function with sequency k defined by Cal(n,k)=W(n,2k+1).
An odd Walsh function with sequency k defined by Sal(n,k)=W(n,2k).
Suppose that in some neighborhood of x=0, F(x)=sum_(k=0)^infty(phi(k)(-x)^k)/(k!) (1) for some function (say analytic or integrable) phi(k). Then ...
A second-order ordinary differential equation d/(dx)[p(x)(dy)/(dx)]+[lambdaw(x)-q(x)]y=0, where lambda is a constant and w(x) is a known function called either the density or ...
A function whose value decreases more quickly than any polynomial is said to be an exponentially decreasing function. The prototypical example is the function e^(-x), plotted ...
A function whose value increases more quickly than any polynomial is said to be an exponentially increasing function. The prototypical example is the function e^x, plotted ...
A function whose value decreases to zero more slowly than any nonzero polynomial is said to be a logarithmically decreasing function. The prototypical example is the function ...
A function whose value increases more slowly to infinity than any nonconstant polynomial is said to be a logarithmically increasing function. The prototypical example is the ...
...
View search results from all Wolfram sites (501482 matches)

