TOPICS
Search

Search Results for ""


11 - 20 of 3574 for Inverse FunctionsSearch Results
Although Bessel functions of the second kind are sometimes called Weber functions, Abramowitz and Stegun (1972) define a separate Weber function as ...
The inverse erf function is the inverse function erfc^(-1)(z) of erfc(x) such that erfc(erfc^(-1)(x))=erfc^(-1)(erfc(x)), (1) with the first identity holding for 0<x<2 and ...
Kelvin defined the Kelvin functions bei and ber according to ber_nu(x)+ibei_nu(x) = J_nu(xe^(3pii/4)) (1) = e^(nupii)J_nu(xe^(-pii/4)), (2) = e^(nupii/2)I_nu(xe^(pii/4)) (3) ...
Two functions f(x) and g(x) are orthogonal over the interval a<=x<=b with weighting function w(x) if <f(x)|g(x)>=int_a^bf(x)g(x)w(x)dx=0. (1) If, in addition, ...
The inverse erf function is the inverse function erf^(-1)(z) of the erf function erf(x) such that erf(erf^(-1)(x)) = x (1) erf^(-1)(erf(x)) = x, (2) with the first identity ...
The inverse function of the Gudermannian y=gd^(-1)phi gives the vertical position y in the Mercator projection in terms of the latitude phi and may be defined for 0<=x<pi/2 ...
The inverse haversine function hav^(-1)(z) is defined by hav^(-1)(z)=2sin^(-1)(sqrt(z)). (1) The inverse haversine is implemented in the Wolfram Language as ...
The functions describing the horizontal and vertical positions of a point on a circle as a function of angle (cosine and sine) and those functions derived from them: cotx = ...
The first Debye function is defined by D_n^((1))(x) = int_0^x(t^ndt)/(e^t-1) (1) = x^n[1/n-x/(2(n+1))+sum_(k=1)^(infty)(B_(2k)x^(2k))/((2k+n)(2k!))], (2) for |x|<2pi, n>=1, ...
There are four varieties of Airy functions: Ai(z), Bi(z), Gi(z), and Hi(z). Of these, Ai(z) and Bi(z) are by far the most common, with Gi(z) and Hi(z) being encountered much ...
1|2|3|4|5 ... 358 Previous Next

...