Search Results for ""
11 - 20 of 3574 for Inverse FunctionsSearch Results
Although Bessel functions of the second kind are sometimes called Weber functions, Abramowitz and Stegun (1972) define a separate Weber function as ...
The inverse erf function is the inverse function erfc^(-1)(z) of erfc(x) such that erfc(erfc^(-1)(x))=erfc^(-1)(erfc(x)), (1) with the first identity holding for 0<x<2 and ...
Kelvin defined the Kelvin functions bei and ber according to ber_nu(x)+ibei_nu(x) = J_nu(xe^(3pii/4)) (1) = e^(nupii)J_nu(xe^(-pii/4)), (2) = e^(nupii/2)I_nu(xe^(pii/4)) (3) ...
Two functions f(x) and g(x) are orthogonal over the interval a<=x<=b with weighting function w(x) if <f(x)|g(x)>=int_a^bf(x)g(x)w(x)dx=0. (1) If, in addition, ...
The inverse erf function is the inverse function erf^(-1)(z) of the erf function erf(x) such that erf(erf^(-1)(x)) = x (1) erf^(-1)(erf(x)) = x, (2) with the first identity ...
The inverse function of the Gudermannian y=gd^(-1)phi gives the vertical position y in the Mercator projection in terms of the latitude phi and may be defined for 0<=x<pi/2 ...
The inverse haversine function hav^(-1)(z) is defined by hav^(-1)(z)=2sin^(-1)(sqrt(z)). (1) The inverse haversine is implemented in the Wolfram Language as ...
The functions describing the horizontal and vertical positions of a point on a circle as a function of angle (cosine and sine) and those functions derived from them: cotx = ...
The first Debye function is defined by D_n^((1))(x) = int_0^x(t^ndt)/(e^t-1) (1) = x^n[1/n-x/(2(n+1))+sum_(k=1)^(infty)(B_(2k)x^(2k))/((2k+n)(2k!))], (2) for |x|<2pi, n>=1, ...
There are four varieties of Airy functions: Ai(z), Bi(z), Gi(z), and Hi(z). Of these, Ai(z) and Bi(z) are by far the most common, with Gi(z) and Hi(z) being encountered much ...
...
View search results from all Wolfram sites (501482 matches)

