TOPICS
Search

Search Results for ""


91 - 100 of 3757 for Incomplete Gamma FunctionSearch Results
The integral representation of ln[Gamma(z)] by lnGamma(z) = int_1^zpsi_0(z^')dz^' (1) = int_0^infty[(z-1)-(1-e^(-(z-1)t))/(1-e^(-t))](e^(-t))/tdt, (2) where lnGamma(z) is the ...
The exponential function has two different natural q-extensions, denoted e_q(z) and E_q(z). They are defined by e_q(z) = sum_(n=0)^(infty)(z^n)/((q;q)_n) (1) = _1phi_0[0; ...
where R[mu+nu-lambda+1]>0, R[lambda]>-1, 0<a<b, J_nu(x) is a Bessel function of the first kind, Gamma(x) is the gamma function, and _2F_1(a,b;c;x) is a hypergeometric ...
The log sine function, also called the logsine function, is defined by S_n=int_0^pi[ln(sinx)]^ndx. (1) The first few cases are given by S_1 = -piln2 (2) S_2 = ...
A function composed of a set of equally spaced jumps of equal length, such as the ceiling function f(x)=[x], floor function f(x)=|_x_|, or nearest integer function f(x)=[x].
A function which has infinitely many derivatives at a point. If a function is not polygenic, it is monogenic.
The identity _2F_1(x,-x;x+n+1;-1)=(Gamma(x+n+1)Gamma(1/2n+1))/(Gamma(x+1/2n+1)Gamma(n+1)), or equivalently ...
The nearest integer function, also called nint or the round function, is defined such that nint(x) is the integer closest to x. While the notation |_x] is sometimes used to ...
An equation derived by Kronecker: where r(n) is the sum of squares function, zeta(z) is the Riemann zeta function, eta(z) is the Dirichlet eta function, Gamma(z) is the gamma ...
J_m(x)=(x^m)/(2^(m-1)sqrt(pi)Gamma(m+1/2))int_0^1cos(xt)(1-t^2)^(m-1/2)dt, where J_m(x) is a Bessel function of the first kind and Gamma(z) is the gamma function. Hankel's ...
1 ... 7|8|9|10|11|12|13 ... 376 Previous Next

...