Search Results for ""
81 - 90 of 3757 for Incomplete Gamma FunctionSearch Results
Lambda_0(phi|m)=(F(phi|1-m))/(K(1-m))+2/piK(m)Z(phi|1-m), where phi is the Jacobi amplitude, m is the parameter, Z is the Jacobi zeta function, and F(phi|m^') and K(m) are ...
By analogy with the log sine function, define the log cosine function by C_n=int_0^(pi/2)[ln(cosx)]^ndx. (1) The first few cases are given by C_1 = -1/2piln2 (2) C_2 = ...
For R[mu+nu]>0, |argp|<pi/4, and a>0, where J_nu(z) is a Bessel function of the first kind, Gamma(z) is the gamma function, and _1F_1(a;b;z) is a confluent hypergeometric ...
The central beta function is defined by beta(p)=B(p,p), (1) where B(p,q) is the beta function. It satisfies the identities beta(p) = 2^(1-2p)B(p,1/2) (2) = ...
where _3F_2(a,b,c;d,e;z) is a generalized hypergeometric function and Gamma(z) is the gamma function (Bailey 1935, p. 16; Koepf 1998, p. 32).
A zero function is a function that is almost everywhere zero. The function sometimes known as "the zero function" is the constant function with constant c=0, i.e., f(x)=0 ...
The sinc function sinc(x), also called the "sampling function," is a function that arises frequently in signal processing and the theory of Fourier transforms. The full name ...
For a discrete function f(n), the summatory function is defined by F(n)=sum_(k in D)^nf(k), where D is the domain of the function.
Let E_1(x) be the En-function with n=1, E_1(x) = int_1^infty(e^(-tx)dt)/t (1) = int_x^infty(e^(-u)du)/u. (2) Then define the exponential integral Ei(x) by E_1(x)=-Ei(-x), (3) ...
Let Gamma(z) be the gamma function and n!! denote a double factorial, then [(Gamma(m+1/2))/(Gamma(m))]^2[1/m+(1/2)^21/(m+1)+((1·3)/(2·4))^21/(m+2)+...]_()_(n) ...
...
View search results from all Wolfram sites (420660 matches)

