Search Results for ""
501 - 510 of 3757 for Incomplete Gamma FunctionSearch Results
A product involving an infinite number of terms. Such products can converge. In fact, for positive a_n, the product product_(n=1)^(infty)a_n converges to a nonzero number iff ...
The spherical Hankel function of the second kind h_n^((1))(z) is defined by h_n^((2))(z) = sqrt(pi/(2x))H_(n+1/2)^((2))(z) (1) = j_n(z)-in_n(z), (2) where H_n^((2))(z) is the ...
sum_(k=0)^m(phi_k(x)phi_k(y))/(gamma_k)=(phi_(m+1)(x)phi_m(y)-phi_m(x)phi_(m+1)(y))/(a_mgamma_m(x-y),) (1) where phi_k(x) are orthogonal polynomials with weighting function ...
Constants gamma such that [int_Omega|f|^qdx]^(1/q)<=gamma[int_Omegasum_(i=1)^N|(partialf)/(partialx_i)|^pdx]^(1/p), where f is a real-valued smooth function on a region Omega ...
The hyperbolic cosine integral, often called the "Chi function" for short, is defined by Chi(z)=gamma+lnz+int_0^z(cosht-1)/tdt, (1) where gamma is the Euler-Mascheroni ...
The distribution with probability density function and distribution function P(r) = (re^(-r^2/(2s^2)))/(s^2) (1) D(r) = 1-e^(-r^2/(2s^2)) (2) for r in [0,infty) and parameter ...
Let alpha, -beta, and -gamma^(-1) be the roots of the cubic equation t^3+2t^2-t-1=0, (1) then the Rogers L-function satisfies L(alpha)-L(alpha^2) = 1/7 (2) ...
The alternating factorial is defined as the sum of consecutive factorials with alternating signs, a(n)=sum_(k=1)^n(-1)^(n-k)k!. (1) They can be given in closed form as ...
A number b_(2n) having generating function sum_(n=0)^(infty)b_(2n)x^(2n) = 1/2ln((e^(x/2)-e^(-x/2))/(1/2x)) (1) = 1/2ln2+1/(48)x^2-1/(5760)x^4+1/(362880)x^6-.... (2) For n=1, ...
A general quartic surface defined by x^4+y^4+z^4+a(x^2+y^2+z^2)^2+b(x^2+y^2+z^2)+c=0 (1) (Gray 1997, p. 314). The above two images correspond to (a,b,c)=(0,0,-1), and ...
...
View search results from all Wolfram sites (420660 matches)

